skip to main content


Search for: All records

Creators/Authors contains: "Randel, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep convection in the Asian summer monsoon is a significant transport process for lifting pollutants from the planetary boundary layer to the tropopause level. This process enables efficient injection into the stratosphere of reactive species such as chlorinated very short-lived substances (Cl-VSLSs) that deplete ozone. Past studies of convective transport associated with the Asian summer monsoon have focused mostly on the south Asian summer monsoon. Airborne observations reported in this work identify the East Asian summer monsoon convection as an effective transport pathway that carried record-breaking levels of ozone-depleting Cl-VSLSs (mean organic chlorine from these VSLSs ~500 ppt) to the base of the stratosphere. These unique observations show total organic chlorine from VSLSs in the lower stratosphere over the Asian monsoon tropopause to be more than twice that previously reported over the tropical tropopause. Considering the recently observed increase in Cl-VSLS emissions and the ongoing strengthening of the East Asian summer monsoon under global warming, our results highlight that a reevaluation of the contribution of Cl-VSLS injection via the Asian monsoon to the total stratospheric chlorine budget is warranted.

     
    more » « less
    Free, publicly-accessible full text available March 19, 2025
  2. Abstract Interannual variability of tropospheric moisture and temperature are key aspects of Earth’s climate. In this study, monthly mean specific humidity ( q ) and temperature ( T ) variability is analyzed using 12 years of COSMIC-1 (C1) radio occultation retrievals between 60°N and 60°S, with a focus on the tropics. C1 retrievals are relatively independent of the a priori values for q and T within the lower/middle troposphere and upper troposphere/lower stratosphere, respectively. Tropical interannual variability is dominated by El Niño–Southern Oscillation (ENSO). Systematic increases and decreases in zonal mean q and T are observed during the 2009/10 and 2015/16 El Niño events and 2007/08 and 2010/11 La Niña events, respectively. ENSO patterns in q and T are isolated using linear regression, and anomaly magnitudes increase with altitude, reaching a maximum in the upper troposphere. Upper-tropospheric q anomalies expand from the tropics into the midlatitude lower stratosphere, and the T vertical structure is consistent with a moist adiabatic response. C1 results are compared with NCAR’s Whole Atmosphere Community Climate Model (WACCM), forced by observed sea surface temperatures, to evaluate model behavior in an idealized setting. WACCM ENSO variations in q and T generally show consistent behavior with C1 with somewhat smaller magnitudes. Case studies are conducted for major ENSO events during the study period. The spatial variability of q is closely aligned with outgoing longwave radiation (OLR) anomalies. For example, midtropospheric q increases over 100% and OLR decreases over 50 W m −2 over the central Pacific during the 2015/16 El Niño, and substantial regional q and T anomalies are observed throughout the tropics and midlatitudes for each event. 
    more » « less
  3. Abstract. Stratospheric circulation is a critical part of the Arctic ozone cycle.Sudden stratospheric warming events (SSWs) manifest the strongest alterationof stratospheric dynamics. During SSWs, changes in planetary wavepropagation vigorously influence zonal mean zonal wind, temperature, andtracer concentrations in the stratosphere over the high latitudes. In thisstudy, we examine six persistent major SSWs from 2004 to 2020 using theModern-Era Retrospective analysis for Research and Applications, Version 2(MERRA-2). Using the unique density of observations around the Greenlandsector at high latitudes, we perform comprehensive comparisons of high-latitude observations with the MERRA-2 ozone dataset during the six majorSSWs. Our results show that MERRA-2 captures the high variability of mid-stratospheric ozone fluctuations during SSWs over high latitudes. However,larger uncertainties are observed in the lower stratosphere and troposphere.The zonally averaged stratospheric ozone shows a dramatic increase of9 %–29 % in total column ozone (TCO) near the time of each SSW, which lastsup to 2 months. This study shows that the average shape of the Arcticpolar vortex before SSWs influences the geographical extent, timing, andmagnitude of ozone changes. The SSWs exhibit a more significant impact onozone over high northern latitudes when the average polar vortex is mostlyelongated as seen in 2009 and 2018 compared to the events in which the polarvortex is displaced towards Europe. Strong correlation (R2=90  %) isobserved between the magnitude of change in average equivalent potentialvorticity before and after SSWs and the associated averaged total columnozone changes over high latitudes. This paper investigates the differentterms of the ozone continuity equation using MERRA-2 circulation, whichemphasizes the key role of vertical advection in mid-stratospheric ozoneduring the SSWs and the magnified vertical advection in elongated vortexshape as seen in 2009 and 2018. 
    more » « less
  4. Abstract

    Deep convection within the Asian summer monsoon (ASM) transports surface level air into the upper troposphere‐lower stratosphere (UTLS). This work aims to understand the distribution of NO2, NO, and NOxin the UTLS ASM anticyclone from satellite measurements. Observations of NO2from the Optical Spectrograph and InfraRed Imager System, the Atmospheric Chemistry Experiment ‐ Fourier Transform Spectrometer (ACE‐FTS), and the Stratospheric Aerosol and Gas Experiment III on the International Space Station are considered. The PRATMO photochemical box model is used to quantify the NOxphotochemistry, and to derive the NOxconcentration using OSIRIS NO2and O3observations. The satellite data show a relative minimum in NO2over the ASM in the summer months, while the corresponding NO and NOxanomalies are elevated, mainly due to low O3and cold temperatures within the ASM. The observations within the ASM show reasonable agreement to simulations from the Whole Atmosphere Community Climate Model.

     
    more » « less
  5. Massive Australian wildfires lofted smoke directly into the stratosphere in the austral summer of 2019/20. The smoke led to increases in optical extinction throughout the midlatitudes of the southern hemisphere that rivalled substantial volcanic perturbations. Previous studies have assumed that the smoke became coated with sulfuric acid and water and would deplete the ozone layer through heterogeneous chemistry on those surfaces, as is routinely observed following volcanic enhancements of the stratospheric sulfate layer. Here, observations of extinction and reactive nitrogen species from multiple independent satellites that sampled the smoke region are compared to one another and to model calculations. The data display a strong decrease in reactive nitrogen concentrations with increased aerosol extinction in the stratosphere, which is a known fingerprint for key heterogeneous chemistry on sulfate/H 2 O particles (specifically the hydrolysis of N 2 O 5 to form HNO 3 ). This chemical shift affects not only reactive nitrogen but also chlorine and reactive hydrogen species and is expected to cause midlatitude ozone layer depletion. Comparison of the model ozone to observations suggests that N 2 O 5 hydrolysis contributed to reduced ozone, but additional chemical and/or dynamical processes are also important. These findings suggest that if wildfire smoke injection into the stratosphere increases sufficiently in frequency and magnitude as the world warms due to climate change, ozone recovery under the Montreal Protocol could be impeded, at least sporadically. Modeled austral midlatitude total ozone loss was about 1% in March 2020, which is significant compared to expected ozone recovery of about 1% per decade. 
    more » « less
  6. Abstract

    The stratospheric influence on summertime high surface ozone (O3) events is examined using a twenty-year simulation from the Whole Atmosphere Community Climate Model. We find thatO3transported from the stratosphere makes a significant contribution to the surfaceO3variability where background surfaceO3exceeds the 95thpercentile, especially over western U.S. Maximum covariance analysis is applied toO3anomalies paired with stratosphericO3tracer anomalies to identify the stratospheric intrusion and the underlying dynamical mechanism. The first leading mode corresponds to deep stratospheric intrusions in the western and northern tier of the U.S., and intensified northeasterlies in the mid-to-lower troposphere along the west coast, which also facilitate the transport to the eastern Pacific Ocean. The second leading mode corresponds to deep intrusions over the Intermountain Regions. Both modes are associated with eastward propagating baroclinic systems, which are amplified near the end of the North Pacific storm tracks, leading to strong descents over the western U.S.

     
    more » « less
  7. Abstract

    The Hunga Tonga Hunga‐Ha'apai (HTHH) volcanic eruption on 15 January 2022 injected water vapor and SO2into the stratosphere. Several months after the eruption, significantly stronger westerlies, and a weaker Brewer‐Dobson circulation developed in the stratosphere of the Southern Hemisphere and were accompanied by unprecedented temperature anomalies in the stratosphere and mesosphere. In August 2022, the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument observed record‐breaking temperature anomalies in the stratosphere and mesosphere that alternate signs with altitude. Ensemble simulations carried out with the Whole Atmosphere Community Climate Model (WACCM6) indicate that the strengthening of the stratospheric westerlies explains the mesospheric temperature changes. The stronger westerlies cause stronger westward gravity wave drag in the mesosphere. Although the enhanced gravity wave drag is partly balanced by a weakening of planetary wave forcing, the net result is an acceleration of the mesospheric mean meridional circulation. The stronger mesospheric circulation, in turn, plays a dominant role in driving the changes in mesospheric temperatures. This study highlights the impact of large volcanic eruptions on middle atmospheric dynamics and provides insight into their long‐term effects in the mesosphere. On the other hand, we could not discern a clear mechanism for the observed changes in stratospheric circulation. In fact, an examination of the WACCM ensemble reveals that not every member reproduces the large changes observed by SABER. We conclude that there is a stochastic component to the stratospheric response to the HTHH eruption.

     
    more » « less